$B#4$D$N%J%$%H$N8r49LdBj(B
$BGr$H9u$N%J%$%H$N8r49(B
$B2<#2$D$r9u$K!$>e#2$D$rGr$K$7$F$/$@$5$$!%(B
$B!JHW$r;}$A>e$2$F2sE>$5$;$k$N$O%J%7$G$9!%(B(^^;) $B!K(B
$B=PE5!'(B P. Grogono and S. Nelson $B!J1JEDLu!K!$LdBj2r7h$H%W%m%0%i%_%s%0!$6aBe2J3X
$B"-(B $B%M%?$P$lCm0U(B$B!J2rEz$,$"$j$^$9!K(B
Problem 341 "The Four Frogs" in Henry E. Dudeney, Amusements in Mathematics, Dover, 1917.
- $B$^$:!$$d$_$/$b$K$d$C$F$bBLL\$@$H$$$&$3$H$rBN83$7$F$/$@$5$$!%(B
- $B$3$NLdBj$O!$!HF17?%0%i%U!I$H!HL?L>E}<#!I$N$h$$NcBj$K$J$j$^$9!%(B
- $B>#L\$r@a(B (node) $B$H$7!$F0$1$kF;6Z$r;^(B (edge) $B$H$7$F!$(B$B%0%i%U(B$B$r=q$$$F$_$^$7$g$&!%@a$K$OL>A0(B$B!JHV9f!K(B$B$rIU$1$?$[$&$,$h$$$G$7$g$&!%(B
- $B$=$N;^$,8r:9$7$J$$$h$&$K!$F17?$J%0%i%U$KJQ7A$7$F$_$^$7$g$&!%C1=c$J7A$K$J$k$O$:$G$9!%(B
- $BGr$H9u$N%J%$%H$r!$$=$N%0%i%U$N>e$KCV$$$F$_$^$7$g$&!%(B
- $B$b$&!$2rEz$O>.3X@8$G$b2r$k$O$:$G$9!%(B
- $B<~>e$N>#L\$K(B 0 $B$+$i=g$KHV9f$rIU$1$k$H!$!H>jM>4D!I$K$b4XO"$7$^$9(B (+3)$B!%(B
$B!!(B0 | $B!!(B1 | $B!!(B2 |
$B!!(B7 | $B!!(B | $B!!(B3 |
$B!!(B6 | $B!!(B5 | $B!!(B4 |
-
$B:G>/
-
$BDL>o$N%A%'%9$HF1$8$K!$Gr$H9u$r8r8_$KF0$+$9$H$$$&>r7o$r$D$1$?$H$-$N!$(B
$B2r$N>uBV!&F0:n%0%i%U(B (PDF) $B!J(BCopr. $B?"ED7r<#$5$s(B 2004-10-22$B!K$G$9!%(B
$B$3$N$H$-$N:G>/
|