
Proceedings of Knots 96
edited by Shin’ichi Suzuki
c©1997 World Scientific Publishing Co.
pp. 501–513

UNIQUENESS OF ESSENTIAL FREE TANGLE

DECOMPOSITIONS OF KNOTS AND LINKS

MAKOTO OZAWA

Abstract. In this paper, we show that if a knot admits an essential free 2-string
tangle decomposition, then essential 2-string tangle decompositions of the knot are
unique up to isotopy, and we characterize the link types which admit non-isotopic
essential free 2-string tangle decompositions.

1. Introduction

Let B be a 3-ball and t = t1 ∪ . . .∪ tn a union of mutually disjoint n arcs properly
embedded in B. Then we call the pair (B, t) an n-string tangle. We say that an
n-string tangle (B, t) is trivial if (B, t) is homeomorphic to (D× I, {x1, . . . , xn}× I)

as pairs, where D is a 2-disk and xi is a point in intD (i = 1, . . . , n). According to
[1], we say that (B, t) is essential if cl(∂B −N(t)) is incompressible and boundary-
incompressible in cl(B − N(t)). And, according to [3], we say that (B, t) is free if

π1(B − t) is a free group. We note that (B, t) is free if and only if cl(B −N(t)) is a
handlebody ([2, 5.2]).

Let L be a knot or link in S3, and let (B, t) and (B ′, t′) be n-string tangles.
We say that a union (B, t) ∪ (B ′, t′) is an n-string tangle decomposition of L if

S3 = B ∪ B ′, B ∩ B ′ = ∂B = ∂B ′, ∂t = ∂t′ and L = t ∪ t′. We say that an
n-string tangle decomposition (B, t) ∪ (B ′, t′) of L is essential (free resp.) if both
(B, t) and (B ′, t′) are essential (free resp.). Let (B, t)∪(B ′, t′) and (C, s)∪(C ′, s′) be
n-string tangle decompositions of L. Then we say that these tangle decompositions

are mutually isotopic if there is an ambient isotopy {ft} : S3 → S3 (t ∈ [0, 1]) such
that f0 = id, f1(∂B) = ∂C and ft(L) = L for any t ∈ [0, 1].

Then our result is ;

Theorem 1.1. Let L be a knot or link in S3 which admits an essential free 2-
string tangle decomposition. Then L admits non-isotopic essential 2-string tan-
gle decompositions if and only if L is equivalent to a 2-component Montesinos link
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M(0; (α1, β1), (2, 1), (α2, β2), (2, 1)) illustrated in Figure 1, where αi and βi are co-
prime integers, and αi is an odd integer greater than 1 (i = 1, 2).

Moreover, if L is the Montesinos link, then L admits exactly two essential free
2-string tangle decompositions up to isotopy, and any essential 2-string tangle de-

composition of L is isotopic to one of those two.

Corollary 1.2. If a knot K admits an essential free 2-string tangle decomposition,
then essential 2-string tangle decompositions of K are unique up to isotopy.

Remark 1.3. The two essential free 2-string tangle decompositions of the Mon-
tesinos link in Theorem 1.1 are given by the 2-spheres P and Q indicated in Figure
1.

P Q

Figure 1. M(0; (α1, β1), (2, 1), (α2, β2), (2, 1))

Throughout this paper, we work in the piecewise linear category. For an n-
manifold X and a subcomplex Y of X, N(Y ) or N(Y ; X) will denote a regular
neighborhood of Y in X.

2. Natures of free tangles

In this section, we prepare some lemmas for Theorem 1.1.

Lemma 2.1. Let V be a handlebody, F a separating surface properly embedded in
V , and V1 and V2 the closure of the components of V −F . If F is incompressible in

V , then both V1 and V2 are handlebodies.

Proof. Since F is incompressible and two-sided in V , both homomorphisms π1(F ) →
π1(V1) and π1(F ) → π1(V2) induced by the inclusion maps are injective. Therefore
both homomorphisms π1(V1) → π1(V ) and π1(V2) → π1(V ) induced by the inclusion

maps are injective. Thus both π1(V1) and π1(V2) are subgroups of π1(V ), hence free
groups. Then by [2, 5.2], both V1 and V2 are handlebodies.

The following Lemmas 2.2, 2.3 and 2.4 follow Lemma 2.1.
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Lemma 2.2. Let (B, t) be a free 2-string tangle and D a disk properly embedded in
B which intersects t in a single point. Then D is isotopic rel.t to a disk in ∂B.

Lemma 2.3. Let (B, t) be a free 2-string tangle. If (B, t) is inessential, then (B, t)
is trivial.

Lemma 2.4. Let (B, t1 ∪ t2) be a free 2-string tangle and A an annulus properly
embedded in B − (t1 ∪ t2) which does not separate t1 and t2. If A is incompressible
in B − (t1 ∪ t2), then A is isotopic rel.t1 ∪ t2 to an annulus in ∂B − t.

The following Lemma 2.5 will be used for Lemmas 2.6 and 2.8.

Lemma 2.5. ([5, Proposition 1.6] , [1, Proposition 2.1]) Let M be an orientable

closed 3-manifold with a genus two Heegaard splitting (V1, V2). If M contains a
2-sphere S such that each component of S ∩ V1 is a non-separating disk in V1 and
S∩V2 is incompressible and not ∂-parallel in V2, then M has a lens space or S2×S1

summand.

Lemma 2.6. Let (B, t) be a free 2-string tangle and S a 2-sphere in intB which

intersects t in four points. If S − t is incompressible in B − t, then S is isotopic
rel.t to ∂B.

Proof. Suppose S is not isotopic rel.t to ∂B for a contradiction. Glue a 3-ball B ′ to
B along their boundaries. Put V1 = B ′ ∪ N(t; B) and V2 = cl(B −N(t; B)). Then,
(V1, V2) is a genus two Heegaard splitting of the 3-sphere B∪B ′, each component of

S ∩V1 is a non-separating disk in V1, and S ∩V2 is incompressible and not ∂-parallel
in V2. In consequence of this observations and Lemma 2.5, the 3-sphere B∪B ′ must
have a lens space or S2 × S1 summand. Thus we obtain a contradiction.

The following Lemma 2.7 will be used for Lemma 2.8.

Lemma 2.7. ([4, Theorem 0.1]) Let L be a tunnel number one link. Then L is
composite if and only if L is a connected sum of a 2-bridge knot and a Hopf link.

Moreover, any unknotting tunnel γ for L is isotopic to an arc obtained from the
upper or lower tunnel for the 2-bridge knot (Figure 2).

Now we define a Montesinos tangle as a “partial sum” of n rational tangles of slope
βi/αi(i = 1, . . . , n) illustrated in Figure 3, and denote it by T (β1/α1, . . . , βn/αn).

Lemma 2.8. Let (B, t1∪t2) be a free 2-string tangle and D a disk properly embedded
in B which intersects t1 ∪ t2 in two points. If D − (t1 ∪ t2) is incompressible in

B − (t1 ∪ t2) and D is not isotopic rel.t1 ∪ t2 to a disk in ∂B, then (B, t1 ∪ t2) is
homeomorphic rel.∂B to a Montesinos tangle T (β/α, 1/2) as pairs, where α and β
are coprime integers and α is an odd integer greater than 1 (Figure 4). In addition,
(B, t1 ∪ t2) is essential.
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Figure 2. 2-bridge decomposition of the 2-bridge knot

Figure 3. Montesinos tangle T (β1/α1, . . . , βn/αn)

D

Figure 4. Montesinos tangle T (β/α, 1/2)

Proof. Since D− (t1∪ t2) is incompressible in B− (t1∪ t2) and D intersects t1∪ t2 in
two points, ∂D splits the four points ∂t1 ∪ ∂t2 in ∂B into pairs of two points. Thus

D separates (B, t1∪t2) into two 2-string tangles, and we denote them by (B1, t
1
1∪t12)

and (B2, t
2
1 ∪ t22). Here, note that by Lemma 2.1, (Bi, t

i
1 ∪ ti

2) is free (i = 1, 2).

Claim 2.9. (Bi, t
i
1 ∪ ti

2) is trivial (i = 1, 2).

Proof. Suppose ∂Bi − (ti
1 ∪ ti

2) is incompressible in Bi − (ti
1 ∪ ti

2). Let Si be a
2-sphere in intB which is obtained by pushing in ∂Bi into intB slightly. Then
Si − (t1 ∪ t2) is incompressible in B− (t1∪ t2) because D− (t1∪ t2) is incompressible
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in B − (t1 ∪ t2). Hence by Lemma 2.6, Si is isotopic rel.t1 ∪ t2 to ∂B. This implies
that D is isotopic rel.t1 ∪ t2 to a disk in ∂B, and contradicts the hypothesis of the
Lemma. Consequently, ∂Bi − (ti

1 ∪ ti
2) is compressible in Bi − (ti

1 ∪ ti
2). Hence by

Lemma 2.3, (Bi, t
i
1 ∪ ti

2) is trivial.

By Claim 2.9, we may assume that (B, t1∪t2) is a Montesinos tangle T (β1/α1, β2/α2)
and (Bi, t

i
1 ∪ ti

2) is a rational tangle of slope βi/αi (i = 1, 2)

Claim 2.10. D intersects only one component of t1 ∪ t2.

Proof. Suppose D intersects both components of t1∪ t2. Let B ′ be a 3-ball and D′ a

disk properly embedded in B ′. Glue B ′ to B so that ∂B ′ = ∂B and ∂D′ = ∂D. Put
V1 = B ′ ∪ N(t1 ∪ t2; B), V2 = cl(B −N(t1 ∪ t2; B)) and S = D ∪ D′. Then, (V1, V2)
is a genus two Heegaard splitting of the 3-sphere B ∪ B ′, each component of S ∩ V1

is a non-separating disk in V1, and S ∩V2 is incompressible and not ∂-parallel in V2.
In consequence of this observations and Lemma 2.5, the 3-sphere B ∪B ′ must have
a lens space or S2 × S1 summand. This is absurd.

By Claim 2.10, we may assume that D ∩ (t1 ∪ t2) = D ∩ t1, t11 ∪ t12 = t1 ∩ B1,

t21 = t1 ∩ B2 and t22 = t2. In addition, α1 is an odd integer greater than 1 because
(B, t1 ∪ t2) is a 2-string tangle and D is not isotopic rel.t1 ∪ t2 to a disk in ∂B.

Let (C, s1 ∪ s2) be a trivial 2-string tangle, E a disk properly embedded in C
which separates the two strings s1 ∪ s2, and γ a “trivial” arc which connects s1 and

s2 (Figure 5).

Figure 5. (C, s1 ∪ s2) with γ
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Let L be the link obtained from (B, t1 ∪ t2) by attaching (C, s1 ∪ s2) so that
∂ti = ∂si(i = 1, 2) and ∂D = ∂E. Then, since cl((B ∪ C) − N(L ∪ γ)) = cl(B −
N(t1 ∪ t2))∪ cl(C −N(s1 ∪ s2 ∪ γ)) ∼= cl(B −N(t1 ∪ t2)) is a genus two handlebody,
L is a tunnel number one link with an unknotting tunnel γ.

Claim 2.11. L is a composite link with the decomposing sphere D ∪ E.

Proof. Let C1 and C2 be the closure of the components of C − E such that Ci ⊃ si

(i = 1, 2). Since α1 is an odd integer greater than 1, (B1 ∪ C1, t
1
1 ∪ t12 ∪ s1) is a

non-trivial 1-string tangle. This completes the proof because (B2 ∪ C2, t
2
1 ∪ t22 ∪ s2)

is not a trivial 1-string tangle.

By Claim 2.11 and Lemma 2.7, L is a connected sum of the 2-bridge knot t1 ∪ s1

and the Hopf link t2 ∪ s2. Then by rotating intB in a “horizontal” axis if necessary,
we may assume that (B, t1 ∪ t2) is the Montesinos tangle in the Lemma.

Finally, if (B, t1 ∪ t2) is inessential, then by Lemma 2.3, it is trivial, and hence

(B, t1) is a trivial 1-string tangle. On the other hand, since α1 is an odd integer
greater than 1 and (B2, t

1
2) is a trivial 1-string tangle, (B, t1) is a non-trivial 1-string

tangle. This completes the proof of the Lemma.

3. Proof of Theorem 1.1

Proof. Let L be a knot or link in S3 with an essential free 2-string tangle decomposi-
tion (B1, t1)∪(B2, t2). Suppose that L admits another essential tangle decomposition

(C1, s1)∪ (C2, s2) which is not isotopic to the above one. Put P = ∂B and Q = ∂C .
If P ∩ Q = ∅, then we may assume that Q is contained in B1. Since Q − t1

is incompressible in B1 − t1 and by Lemma 2.6, Q is isotopic rel.t1 to P . This
contradicts the hypothesis. Therefore P ∩ Q 6= ∅.

We may assume that each component of P ∩Q is a loop and P ∩Q ∩L = ∅, and
that |P ∩ Q| is minimum among all 2-spheres ambient isotopic rel.L to Q.

Claim 3.1. Each component of P ∩Q is a loop in P (in Q resp.) which splitts the
four points P ∩ L (Q ∩ L resp.) into pairs of two points.

Proof. Let l be an innermost component of P ∩Q in P , and let D be the correspond-

ing innermost disk in P . Here, by exchanging D if necessary, we may assume that
D ∩L consists of at most two points. If D∩L = ∅, then by the incompressibility of
Q−L in S3−L and the irreducibility of Bi− ti(i = 1, 2), we can reduce |P ∩Q|, and

this contradicts the minimality of |P ∩ Q|. If D ∩ L is one point, then by Lemma
2.2, we can reduce |P ∩ Q|, and this contradicts the minimality of |P ∩ Q|. This
completes the proof.

Claim 3.2. P ∩ Q consists of a single loop.
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Proof. Suppose P ∩ Q consists of more than one loop. Then by Claim 3.1, those
are mutually parallel in P − L and in Q − L. Hence there is an annulus A in
Q with A ∩ (P ∩ Q) = ∂A. Then A is an annulus properly embedded in B1 or
in B2 which satisfies the hypothesis of Lemma 2.4. Thus we can reduce |P ∩ Q|,
and this contradicts the minimality of |P ∩ Q|. This completes the proof because
P ∩ Q 6= ∅.

Let D1 and D2 be the closure of the components of Q−(P ∩Q) such that D1 ⊂ B1

and D2 ⊂ B2. Then for each i = 1, 2, Di is a disk properly embedded in Bi which
intersects ti in two points. Further, by the incompressibility of Q − L in S3 − L

and the minimality of |P ∩ Q|, it follows that Di satisfies the hypothesis of Lemma
2.8. Therefore, (Bi, ti) is a Montesinos tangle T (βi/αi, 1/2), where αi and βi are
coprime integers and αi is an odd integer greater than 1. Hence L is equivalent to

a Montesinos link M(0; (α1, β1), (2, 1), (α2, β2), (2, 1)), where αi and βi are coprime
integers and αi is an odd integer greater than 1 (i = 1, 2)

Conversely, let L be the Montesinos link in Theorem 1.1, and let P and Q be the
2-spheres indicated in Figure 1. Then by Lemma 2.8, each of P and Q gives an

essential free 2-string tangle decomposition of L.
Let Σ be the 2-fold branched covering space of S3 along L. Then Σ is a Seifert

fibered space over a 2-sphere with four singular fibers f1, f2, f3 and f4 such that the
Seifert invariants of f1, f2, f3 and f4 are 1/2, 1/2, β1/α1 and β2/α2, where αi is an

odd integer greater than 1 (i = 1, 2). Then we have;
π1(Σ) ∼= 〈x1, x2, x3, x4, h|x2

1h = 1, x2
2h = 1, xα1

3 hβ1 = 1, xα2
4 hβ2 = 1, x1x2x3x4 =

1, [xi, h] = 1(i = 1, 2, 3, 4)〉.
Let P0 and Q0 be the preimages of P and Q in Σ by the covering projection. Then

P0 and Q0 are incompressible tori saturated in the Seifert fibration.
Suppose that P and Q are mutually isotopic rel.L. Then P0 and Q0 are mutually

isotopic in Σ, and hence the fiber f3 is isotopic to the fiber f4. This implies that

α1 = α2 and that x3 is conjugate to x4h
b for some integer b.

Put G = π1(Σ)/〈x4, h〉 ∼= 〈x1, x2, x3|x2
1 = 1, x2

2 = 1, xα1
3 = 1, x1x2x3 = 1〉. Then

by the above argument G is isomorphic to the group H ∼= 〈x1, x2|x2
1 = 1, x2

2 =
1, x1x2 = 1〉 because x3 = wx4h

bw−1 and x4 = h = 1. Then H is a cyclic group, and

by Satz 3 of [6], G is not a cyclic group because of α1 > 1. This is a contradiction,
and hence P and Q are not mutually isotopic.

The latter harf of Theorem 1.1 is contained in the proof of the former harf. This
completes the proof of Theorem 1.1.
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